56 research outputs found

    New Screening Test Developed for the Blanching Resistance of Copper Alloys

    Get PDF
    NASA's extensive efforts towards more efficient, safer, and more affordable space transportation include the development of new thrust-cell liner materials with improved capabilities and longer lives. For rocket engines fueled with liquid hydrogen, an important metric of liner performance is resistance to blanching, a phenomenon of localized wastage by cycles of oxidation-reduction due to local imbalance in the oxygen-fuel ratio. The current liner of the Space Shuttle Main Engine combustion chamber, a Cu-3Ag-0.5Zr alloy (NARloy-Z) is degraded in service by blanching. Heretofore, evaluating a liner material for blanching resistance involved elaborate and expensive hot-fire tests performed on rocket test stands. To simplify that evaluation, researchers at the NASA Glenn Research Center developed a screening test that uses simple, in situ oxidation-reduction cycling in a thermogravimetric analyzer (TGA). The principle behind this test is that resistance to oxidation or to the reduction of oxide, or both, implies resistance to blanching. Using this test as a preliminary tool to screen alloys for blanching resistance can improve reliability and save time and money. In this test a small polished coupon is hung in a TGA furnace at the desired (service) temperature. Oxidizing and reducing gases are introduced cyclically, in programmed amounts. Cycle durations are chosen by calibration, such that all copper oxides formed by oxidation are fully reduced in the next reduction interval. The sample weight is continuously acquired by the TGA as usual

    An Insidious Mode of Oxidative Degradation in a SiC-SiC Composite

    Get PDF
    The oxidative durability of a SiC-SiC composite with Hi-Nicalon fiber and BN interphase was investigated at 800 C (where pesting is known to occur in SiC-SiC composites) for exposure durations of up to 500 hours and in a variety of oxidant mixes and flow rates, ranging from quasi-stagnant room air, through slow flowing O2 containing 30-90% H2O, to the high-velocity flame of a burner rig. Degradation of the composite was determined from residual strength and fracture strain in post-exposure mechanical tests and correlated with microstructural evidence of damage to fiber and interphase. The severest degradation of composite behavior was found to occur in the bumer rig, and is shown to be connected with the high oxidant velocity and substantial moisture content, as well as a thin sublayer of carbon indicated to form between fiber and interphase during composite processing

    High-temperature oxidation behavior of reaction-formed silicon carbide ceramics

    Get PDF
    The oxidation behavior of reaction-formed silicon carbide (RFSC) ceramics was investigated in the temperature range of 1100 to 1400 C. The oxidation weight change was recorded by TGA; the oxidized materials were examined by light and electron microscopy, and the oxidation product by x-ray diffraction analysis (XRD). The materials exhibited initial weight loss, followed by passive weight gain (with enhanced parabolic rates, k(sub p)), and ending with a negative (logarithmic) deviation from the parabolic law. The weight loss arose from the oxidation of residual carbon, and the enhanced k(sub p) values from internal oxidation and the oxidation of residual silicon, while the logarithmic kinetics is thought to have resulted from crystallization of the oxide. The presence of a small amount of MoSi, in the RFSC material caused a further increase in the oxidation rate. The only solid oxidation product for all temperatures studied was silica

    Oxidation Behavior of GRCop-84 Copper Alloy Assessed

    Get PDF
    NASA's goal of safe, affordable space transportation calls for increased reliability and lifetimes of launch vehicles, and significant reductions of launch costs. The areas targeted for enhanced performance in the next generation of reusable launch vehicles include combustion chambers and nozzle ramps; therefore, the search is on for suitable liner materials for these components. GRCop-84 (Cu-8Cr-4Nb), an advanced copper alloy developed at the NASA Glenn Research Center in conjunction with Case Western Reserve University, is a candidate. The current liner of the Space Shuttle Main Engine is another copper alloy, NARloy-Z (Cu-3Ag-0.1Zr). It provides a benchmark against which to compare the properties of candidate successors. The thermomechanical properties of GRCop-84 have been shown to be superior, and its physical properties comparable, to those of NARloy-Z. However, environmental durability issues control longevity in this application: because copper oxide scales are not highly protective, most copper alloys are quickly consumed in oxygen environments at elevated temperatures. In consequence, NARloy-Z and most other copper alloys are prone to blanching, a degradation process that occurs through cycles of oxidation-reduction as the oxide is repeatedly formed and removed because of microscale fluctuations in the oxygen-hydrogen fuel systems of rocket engines. The Space Shuttle Main Engine lining typically degraded by blanching-induced hot spots that lead to surface roughening, pore formation, and coolant leakage. Therefore, resistance to oxidation and blanching are key requirements for second-generation reusable launch vehicle liners. The rocket engine ambient includes H2 (fuel) and H2O (combustion product) and is, hence, under reduced oxygen partial pressures. Accordingly, our studies were expanded to include oxygen partial pressures as low as 322 parts per million (ppm) at the temperatures likely to be experienced in service. A comparison of 10-hr weight gains of GRCop-84, NARloy-Z, and pure copper in 0.032, 2.2, and 100 percent oxygen from 550 to 750 C is shown. In 2.2 vol% and higher oxygen content, GRCop-84 oxidation was slower than that of NARloy-Z or Cu, but that advantage was lost or diminished in 322-ppm O2. Over longer (50-hr) exposures in 1.0 atm O2, however, the advantage of GRCop-84 increased significantly, its oxidation rate becoming approximately 10 times slower than those of Cu and NARloy-Z from 500 to 700 C. Weight gains were moderate and the kinetics parabolic for all three materials in 2.2 vol% and higher oxygen content; however, in 322-ppm O2, the scales were nonprotective below about 650 C, as reflected in linear kinetics and large weight gains. The superior oxidation resistance of GRCop-84 is likely related to the kinetics of extra oxygen consumption to form the additional oxides of Cr and Nb detected beneath the GRCop-84 oxide layer. While we continue to evaluate the blanching resistance of GRCop-84 in other tests, these oxidation results indicate that GRCop-84 is suitable as a reusable launch vehicle liner, and in applications where it is desired to use a copper alloy but without the risk of oxidative failure. Three bar charts comparing overall specific weight gains by each of the three materials studied. The top chart is for oxidation in 1.0 atm of oxygen, the middle is for 2.2% oxygen (balance argon), and the bottom is for 0.0322% oxygen. GRCop-84 outperforms the other two materials, showing the least weight gain in nearly all cases

    VOFilter, Bridging Virtual Observatory and Industrial Office Applications

    Full text link
    VOFilter is an XML based filter developed by the Chinese Virtual Observatory project to transform tabular data files from VOTable format into OpenDocument format. VOTable is an XML format defined for the exchange of tabular data in the context of the Virtual Observatory (VO). It is the first Proposed Recommendation defined by International Virtual Observatory Alliance, and has obtained wide support from both the VO community and many Astronomy projects. OpenOffice.org is a mature, open source, front office applications suite with the advantage of native support of industrial standard OpenDocument XML file format. Using the VOFilter, VOTable files can be loaded in OpenOffice.org Calc, a spreadsheet application, and then displayed and analyzed as other spreadsheet files. Here, the VOFilter acts as a connector, bridging the coming VO with current industrial office applications. Virtual Observatory and technical background of the VOFilter are introduced. Its workflow, installation and usage are presented. Existing problems and limitations are also discussed together with the future development plans.Comment: Accepted for publication in ChJAA (9 pages, 2 figures, 185KB

    Temperature dependence of the biaxial modulus, intrinsic stress and composition of plasma deposited silicon oxynitride films

    Get PDF
    Silicon oxynitride films were deposited by plasma-enhanced chemical-vapor deposition. The elemental composition was varied between silicon nitride and silicon dioxide: SiO(0.3)N(1.0), SiO(0.7)N(1.6), SiO(0.7)N(1.1), and SiO(1.7)N(0.%). These films were annealed in air, at temperatures of 40-240 C above the deposition temperature (260 C), to determine the stability and behavior or each composition. the biaxial modulus, biaxial intrinsic stress, and elemental composition were measured at discrete intervals within the annealing cycle. Films deposited from primarily ammonia possessed considerable hydrogen (up to 38 at.%) and lost nitrogen and hydrogen at anneal temperatures (260-300 C) only marginally higher than the deposition temperature. As the initial oxygen content increased a different mechanism controlled the behavior or the film: The temperature threshold for change rose to approximately equal to 350 C and the loss of nitrogen was compensated by an equivalent rise in the oxygen content. The transformation from silicon oxynitride to silica was completed after 50 h at 400 C. The initial biaxial modulus of all compositions was 21-3- GPa and the intrinsic stress was -30 to 85 MPa. Increasing the oxygen content raised the temperature threshold where cracking first occurred; the two film compositions with the highest initial oxygen content did not crack, even at the highest temperature (450 C) investigated. At 450 C the biaxial modulus increased to approximately equal to 100 GPa and the intrinsic stress was approximately equal to 200 MPa. These increases could be correlated with the observed change in the film's composition. When nitrogen was replaced by oxygen, the induced stress remained lower than the biaxial strength of the material, but, when nitrogen and hydrogen were lost, stress-relieving microcracking occurred

    Powder-Derived High-Conductivity Coatings for Copper Alloys

    No full text
    Makers of high-thermal-flux engines prefer copper alloys as combustion chamber liners, owing to a need to maximize heat dissipation. Since engine environments are strongly oxidizing in nature and copper alloys generally have inadequate resistance to oxidation, the liners need coatings for thermal and environmental protection; however, coatings must be chosen with great care in order to avoid significant impairment of thermal conductivity. Powder-derived chromia- and alumina- forming alloys are being studied under NASA's programs for advanced reusable launch vehicles to succeed the space shuttle fleet. NiCrAlY and Cu-Cr compositions optimized for high thermal conductivity have been tested for static and cyclic oxidation, and for susceptibility to blanching - a mode of degradation arising from oxidation-reduction cycling. The results indicate that the decision to coat the liners or not, and which coating/composition to use, depends strongly on the specific oxidative degradation mode that prevails under service conditions

    Evaluation of a porous fiber coating in SiC–Si 3

    No full text
    • …
    corecore